SUSTAINABILITY PEDAGOGICAL CONTENT KNOWLEDGE IN CASE OF BASIDIOMYCOTA MATERIALS FOR HIGH SCHOOL STUDENT MUST POSSESS IN LEARNING THAT SUPPORT SUSTAINABLE DEVELOPMENT

E. Hartadiyati, W.H^{1*}, Wiyanto², A. Rusilowati², S. Ngabekti² ¹Postgraduate Science Education Doctoral Program, Universitas Negeri Semarang ²Department of Physics, Mathematics and Science Faculty, Universitas Negeri Semarang ^{*}Email: <u>hartadiatieny@gmail.com</u>

ABSTRACT

To facilitate the implementation of learning that supports education for Sustainable Development, this paper intends to provide an example of a pedagogical knowledge content framework for learning using applicable curriculum materials. Furthermore, three aspects of sustainable development, namely social, economic and environmental, are embedded in the learning materials. In this article exemplified Basidiomycota for high school students. The framework uses systematic questions in the Content Representation (CoRe) instrument. There are 16 questions divided into 4 questions related to the breadth and depth of the material; three integrated aspects (social, economic and environmental) into the material are found in 7 questions; Next there are 5 questions related to pedagogy to teach the three aspects of sustainability that are embedded in the Basidiomycota material. With the help of the CoRe instrument, it produces learning by the teacher, namely basidiomycota material containing sustainability.

Keywords: pedagogical content knowledge; CoRe; embedded; sustainability

1 INTRODUCTION

Issues such as climate change, loss of biodiversity, food security, healthy living, po-verty, irresponsible consumption and production patterns are increasingly receiving global attention as urgent problems facing humanity. The United Nations has catego-rized those issues as a sustainability and has formulated the Sustainable Development Goals (SDGs).

The principles of sustainability first emerged in 1989 reported by the World Com-mission loss of on Environment and Development, entitled Our Common Future which stated that activities to meet the needs of the present generation should not override the ability of future, generations to meet their needs, emphasizing intergenerational equality and the interconnectedness of environmental, economic and social systems as the key to the concept of sustainability Purvis et al., 2019). Sustainability is a complex construction rooted in the concern for intergenerational equality and the balance of resource use and regeneration in the ecological field. Eventually, sustainability is a goal that will be achieved when human-caused environmental degradation, overconsump-tion and economic injustice eliminate the ability of the future generations to meet their needs (Nolet, 2009). The community is expected to be able to develop knowledge, understanding, skills, values, abilities and dispositions to respond to these complex problems.

Education is often seen as a central role in building society. In Indonesia, regarding to

education for sustainability, there is no special curriculum that accommodates sus-tainability in formal education. It is only a directive from the 2013 revision curriculum which one of the contexts in learning content was the Sustainability Development Goals (SDGs). The statement does not provide a more detailed explanation on how to develop it to become a learning material that is in accordance with the curriculum.

Within the framework of curriculum development that applies in Indonesia, which is the 2013 curriculum, there must be a learning planning document in accordance with the basic competencies that have been determined. Learning planning must be made by the teacher himself. Teachers and prospective teachers continue to train their abilities in designing learning, one of which is understanding Pedagogical Content Knowledge (PCK). It is known that PCK can facilitate effective teaching and learning in science education (Lehane & Bertram, 2016).

This paper focuses on the intersection between the concept of sustainability and the existing curriculum, so how can PCK integrate the concept of sustainability with cur-riculum materials, especially Basidiomycota material? The Basidiomycota material was chosen because it is a large group of fungi that can be seen with the naked eye, widely cultivated and widely used by Indonesian people for daily life such as food sources, cosmetics and medicine (Hiola, 2011; Khayati & Warsito, 2016; Wahyudi et al., 2016; Al Ulya et al., 2017; Lestari et al., 2018). This makes the Phylum Basidiomycota fulfil the social aspect, which is widely used for cultivation as a source of livelihood, the economic aspect is profitable because it becomes a source of income (Herremans & Reid, 2002; Sudrajat, 2018, Moreno-Camacho et al., 2019; Gu et al., 2019; Slarwamin et al., 2021), and environmental aspects, it is said that fungi in the forest act as decomposers (sap-rophytes) for dead plants and animals because they have hydrolase enzymes (Valadares et al., 2016; Sun et al., 2022; Berger & Ersoy, 2022 so that they can play a role in soil formation and fertility through the nutrient cycle (Taylor et al., 2015; Ernawati & Susanti, 2021; Susan & Retnowati, 2017) in addition, fungi are symbiotic with plant roots by forming mycorrhizae to help plant growth (Volk, 2013; Wahyudi et al.). The repre-sentation of sustainability PCK on Basidiomycota material is expected to provide new knowledge about PCK representation to integrate the concept of sustainability into materials according to the curriculum.

2 METHOD

This research is a descriptive qualitative research because this research represents pedagogical content knowledge (PCK) for the sustainability of the Basidiomycota ma-terial. In Indonesia, there is no specific curriculum to provide sustainable education, an understanding of the Sustainable Development Goals is only placed as one of the con-texts in the material in the curriculum. Based on this, one way in implementing educa-tion for sustainability is to embed the concept of sustainability in the curriculum (Evans et al., 2017). In this article, it is presented that the concept of sustainability is embedded in the curriculum material.

In this article, the socio-cultural, economic and environmental aspects are inte-grated in the concept of the Basidiomycota material. PCK representation for learning material Basidiomycota, using a concept that has been developed by (Mulhall et al., 2003; Loughran et al., 2012) known as Content Representation (CoRe). CoRe is related to certain materials that focus on describing the teacher's understanding of the aspects that represent and shape the material.

CoRe in this article is the teacher's perspective on the Basidiomycota material that will be taught to students by adding a sustainability mindset. The CoRe component developed in this article is a modification of the CoRe developed, which consists of seven questions taken from Loughran et al., (2012) and nine questions to represent the concept of sustainability in the Basidiomycota material. The sixteen questions are as follows: (1)What should students master about this concept?

(2) Why is the concept important to students? (3) Regarding this concept, what concept do you think is not the time for students to know yet? (4) What difficulties or limitations might you experience in teaching the concept? (5) What conditions/characteristics of students (initial knowledge/way of thinking/interests) are you considering in teaching this concept? (6) Use/selection of context: personal/local/national/global to provide an understanding of the idea? (7) How is the embedding of socio-cultural aspects in this concept? (8) How is the embedding of the economic aspect in this concept? (9) How is the embedding of environmental aspects in this concept? (10) How will you take advantage of existing technology in teaching the concept of macro Basidiomycota charged with sustainability? (11) How will you achieve the goal of teaching the concept of sustainability-charged macro Basidiomycota with the absence of technology facility? (12) What is the teaching procedure/sequence/flow you chose to teach the concept of macro Basidiomycota charged with sustainability and its particular reasons? (13) How do you know whether students understand or not? (14) What activities in learning in order to maintain the existing Green conditions? (15) What are the activities in learning in order to prevent Green condition so that there is no disturbance? (16) What activities in learning in order to build the existing Green conditions to be more sustainable? Furthermore, it is ar-ranged as in Table 1 below.

	Questions	Big Ideas				
		1	2	3	4	5
1.	What should students master about this concept?					
2.	Why is the concept important to students?					
3.	Regarding this concept, what concept do you think					
	is not the time for students to know yet?					
4.	What difficulties or limitations might you					
	experience in teaching the concept?					
5.	What conditions/characteristics of students (initial					
	knowledge/way of thinking/interests) are you					
	considering in teaching this concept?					
6.	Use/selection of context:					
	personal/local/national/global to provide an					
	understanding of the idea?					
7.	How is the embedding of socio-cultural aspects in					
	this concept?					
8.	How is the embedding of the economic aspect in					
	this concept?					
9.	How is the embedding of environmental aspects in					
	this concept?					
10.	How will you take advantage of existing					
	technology in teaching the concept of macro					
	Basidiomycota charged with sustainability?					
11.	How will you achieve the goal of teaching the					
	concept of sustainability-charged macro					
	Basidiomycota with the absence of technology					
	facility?					

 Table 1. Content Representation for Sustainability Pedagogical Content Knowledge

12.	What is the teaching procedure/sequence/flow you
	chose to teach the concept of macro
	Basidiomycota charged with sustainability and its
	particular reasons?
13.	How do you know whether students understand or
	not?
14.	What activities in learning in order to maintain the
	existing Green conditions?
15.	What are the activities in learning in order to
	prevent Green condition so that there is no
	disturbance?
16.	What activities in learning in order to build the
	existing Green conditions to be more sustainable?

3 RESULTS AND DISCUSSION

PCK representation in the form of Content Representation (CoRe). Content Rep-resentation Representation of PCK in the form of Content Representation (CoRe), usu-ally written in tabular form to holistically describe PCK related to teaching of a specific topic, namely the Basidiomycota. The material representation of Basidiomycota consists of 5 big ideas/big concepts, presented in Table 2. Content Representation in the form of a matrix, big idea or essential concept about a particular topic at the head of the columns and a set of pedagogical questions for each row.

				Big Idea		
	Questions	Characteristic	Structure of	Reproduction o	f Classification of	The role of
	Questions	of	Basi-diomycota	Basidiomycota	Basidiomycota	Basidiomycota
		Basidiomycota				
1.	What should	Characteristics	The structure of	The life cycle	Classification of	Classification
	students master	of Macro	macro	of	Basidiomycota:	of
	about this	Basidiomycota:	Basidiomycota	Basidiomycota	according to the	Basidiomycota:
	concept?	1.It is a	is shaped like	is sexually and	species	according to the
		filamentous	an umbrella	asexually	cultivated by	species
		organism	which consists	reproductive.	mushroom	cultivated by
		made of a	of parts, namely	Sexual	farmers include:	mushroom
		collection of	the hood (cap	reproduction is	Pleorotus	farmers
		hyphae	or pileus),	produced by	ostreatus (oyster	include:
		(Bentil, 2021)	blades	basidiospore.	mushroom),	Pleorotus
			(lamella), fruit	Otherwise,	Agaricus	ostreatus
		2.It has a large	stalks (stape or	asexual	bisporus (button	(oyster
		basidiocarp	stalk), rings	reproduction is	mushroom),	mushroom),
		(Volk, 2013)	(annulus)	created by	Volvariella	Agaricus
		so that it can	(Taylor 2009)	conidiospores.	volvacea	bisporus
		be observed	The		(merang	(button

Table 2. Content Representation for Sustainability Pedagogical Content Knowledge A Case of Basidiomycota

with the	reproduction	(Palmer and	mushroom),	mushroom),
naked eye	structure is in	Horton, 2006)	Auricularia	Volvariella
(Tang, 2018)	the form of	It is also	auricula-judae,	volvacea
and can be	blades (gills)	descriptively	A. polytricha	(merang
held or picked	located on the	informed by	(ear mushroom),	mushroom),
by hand	lower surface	Taylor 1993,	Lentinula edodes	Auricularia
(Nasution,	of the umbrella	Kues 2000,	(shitake	auricula-judae,
2018)	or hood (Bentil,	Halbwachs,	mushroom),	A. polytricha
	2021).	2015, Bentil,	Calocybe indica	(ear
3.Basidia		2021)	(milk	mushroom),
(singularly			mushroom).	Lentinula
called			Divisio	edodes (shitake
basidium) are			Basidiomycota is	mushroom),
shaped like a			divided into 3	Calocybe indica
mace, which			subdivisios or	(milk
is a terminal			subphylums	mushroom) .
cell enlarged			namely	Divisio
from hyphae			Agaricomycotina	Basidiomycota
(Bentil, 2021)			which consists of	is divided into 3
4.It has a			3 classes,	subdivisios or
basidium			Pucciniomycotin	subphylums
during			a which consists	namely
meiosis which			of 8 Classes, and	Agaricomycoti
contains			Ustilaginomycoti	na which
meiospores.			na which	consists of 3
These spores			consists of 3	classes,
are called			Classes.	Pucciniomycoti
basidiospores			Classification is	na which
(Desjardin			carried out	consists of 8
2004).			according to the	Classes, and
5. Saprophyte 1s			order of	Ustilaginomyco
mostly the			classification:	tina which
way of its			D1V1S10	consists of 3
living			Subdivisio	Classes.
6.It has a			Class	Classification is
habitat in a			Subclass	carried out
numid area			Order	according to the
			Famili	order of
			(Drondz 2014	Divisio
			(DIOII0Z, 2014, Vong 2011)	DIVISIO Subdivisio
			$\frac{1}{2011}$	Class
			Swall 1993, Blackwell 2004	Class
			mention ²	Order
				Famili
			Liasses.	Genus
			nymenomycetes,	(Brondz 2014
			s and	(D10102, 2014, Vang 2011)
			ustilaginomycete s and	(Brondz, 2014, Yang 2011).

					urediniomycetes.	Swan 1995, Blackwell 2004 mention 3 Classes: hymenomycete s, ustilaginomycet es and urediniomycete s.
2.	Why is the concept important to students?	Able to distinguish the special characteristic of macro Basidiomycota from other divisio	Able to distinguish the structure of macro Basidiomycota from other divisio	Connecting between body structure and reproductive function; and for cultivation (inoculation of fungal spores on the growing medium)	Having deeper understanding about the differences and similarities of macro Basidiomycota	Providing meaningful knowledge to solve problems in students' daily lives, including sustainability
3.	Regarding this concept, what concept do you think is not the time for students to know yet?	No need to learn about genetics or genome traits	It must be complete. Everything must be shown from the fruit body to the basidiospore but there is no need to know about how to regulate the physiology of growth / formation	It must be shown completely about sexual and asexual reproduction. There is no need to know about regulation of reproductive physiology	Classification of divisio to species (only for macro- sized and edible species)	Only those who act as decomposers and as foodstuffs to meet the concept of sustainability
4.	What difficulties or limitations might you experience in teaching the concept?	Cannot show all the characteristics with direct/real objects.	In general, the existing learning resources do not include size and extremely small sections cannot be shown directly /concretely	Cannot show all stages with direct/real objects.	Cannot show all instances of species with direct/real objects.	Cannot show all species with direct/real objects relating to their role.
5.	What conditions/char acteristics of students (initial	Local as it is found a lot around students	Local as it is found a lot around students	Local as it is found a lot around students	Local as it is found a lot around students	Local as it is found a lot around students

	knowledge/wa y of thinking/inte- rests) are you considering in teaching this concept?					
6	Use/selection of context: personal/local/ national/global to provide an understanding of the idea?	The characteristic of macro Basidiomycota on a cultivation activity	The body structure of macro Basidiomycota macro on a cultivation activity	How to reproduce macro Basidiomycota at a cultivation activity	Classification of macro Basidiomycota in a cultivation activity	Fungus cultivation macro Basidiomycota for food security and a good source of nutrition (El- Ramady, 2022)
7.	How is the embedding of socio-cultural aspects in this concept?	-	The result of cultivation of mushrooms for the source of family income that are worth selling; the difference in selling value is based on size and shape.	-	-	The cultivation of macro Basidiomycota mushrooms as a source of income (reducing poverty) (Grimm, 2018) and students analysis of additional opportunities of mushroom farmers' income from the results of making organic fertilizers from spent mushroom substrates
8.	How is the embedding of the economic aspect in this concept?	-	-	-	-	Based on the literature, students designed the use of Spent Mushroom Substrate (SMS) for the manufacture of organic

						fertilizer for plants; spent mushroom substrate for other macro Basidiomycota mushroom substrates so it can build a good environment
9.	How is the embedding of environmental aspects in this concept?	Having preliminary understan- ding about divisio fungi and having the same pattern of thinking when discussing characteristics	The structure of the macro Basidiomycota is effortless to see and easy to understand because it is macroscopic	Preliminary knowledge has been obtained about devisio of fungi	Classification is carried out in the same way as the previous divisio of fungi to species	Students can easily find out about the role of Basidiomycota such as foodstuffs and decomposers
10.	How will you take advantage of existing technology in teaching the concept of macro Basidiomycota charged with sustainability?	A number of features (4 characteristics) of macro Basidiomycota is written using digital text in complete images using power points	Digital picture of macro Basidiomycota' s structure equipped with image captions with digital text	Videos from Youtube with digital text about reproduction of macro Basidiomycota using power point	Classification of digital text based on the characteristic and structure of macro Basidiomycota equipped with digital images using power points	Sustainable merang mushroom cultivation (seen from social, economic and environmental integrated aspects) using video modifications from Youtube and equipped with explanations digital text
11.	How will you achieve the goal of teaching the concept of sustainability- charged macro Basidiomycota with the absence of	A number of cha-racteristics (4 traits) of Basidiomycota macros are written in the form of printed text equipped with printed picture	Printed image of macro Basidiomycota structure equipped with image caption	Print image about reproduction of macro Basidiomycota equipped with printed text	Printed text on classification based on the characteristic and structure of macro Basidiomycota macro with printed images	Printed images of sustainable merang mushroom (seen from social, economic and environmental integrated aspects) and

technology					equipped with
12. What is the teaching procedure/sequ ence/flow you chose to teach the concept of macro Basidiomycota charged with sustainability and its particular reasons?	Using the Project Based Learning model guided by the Student Activity Sheet: students design a project to find the macro Basidiomycota features of a cultivation activity then present them in the form of a video.	What is the teaching procedure/ sequence/flow you chose to teach the concept of macro Basidiomycota charged with sustainability and its particular reasons?	Using the Project Based Learning model guided by the Student Activity Sheet: students design a project to find the macro Basidiomycota features of a cultivation activity then present them in the form of a video.	What is the teaching procedure/seque nce/flow you chose to teach the concept of macro Basidiomycota charged with sustainability and its particular reasons?	Using the Project Based Learning model guided by the Student Activity Sheet: students design a project to find the macro Basidiomycota features of a cultivation activity then present them in the form of a video
13. How do you know whether or not students understand?	Quantifying students' understanding using multiple- choice question which describes the 4 characteristics of the macro Basidiomycota fungus	Quantify students' understanding using multiple- choice question and students' investigation video on mushroom cultivation which is shown the adult macro Basidiomycota mushrooms and is seen clear parts (given captions or sounds which explaining parts of the structure of the macro Basidiomycota fungus	Measuring student comprehension using multiple- choice questions and essays which students can explain a complete systematic stages of sexual and asexual reproduction with images	Quantify students' understanding using multiple choice question and essays which students can classify based on results of identifying the characteristics and structure of macro Basidiomycota	Measuring students cognitive understanding using multiple- choice question about several roles for health, food, and the environment. Students' understanding is measured by assessing the products produced by students, the concept of sustainability in the cultivation of macro Basidiomycota mushrooms
14. What activities in learning in order to maintain the existing Green conditions?			-		

15.	What are the	-
	learning in	
	order to	
	prevent Green	
	condition so	
	that there is no	
	disturbance?	
16.	What activities	Building a useless thing becomes useful one: the waste of the mushroom growing media
	in learning in	can be used to plant fertilizer and the planting medium for other species of
	order to build	Basidiomycota mushrooms which can increase the income of mushroom farmers and
	the existing	improve environmental quality.
	Green	
	conditions to	
	be more	
	sustainable?	

The teacher's PCK sustainability can be seen from its ability to develop concepts that are considered important by teachers, the ability to describe important concepts and the ability to embed the concept of sustainability (social, economic and environ-mental aspects that are integrated with an understanding of activities in the social field that must be profitable but should not damage the environment) in these important concepts then choose the right pedagogy to teach it.

The PCK representation of the sustainability of the Basidiomycota material that has been described in Table 1 shows that the ability to master the Basidiomycota concept can be seen from the selected big idea/essential concept. The selected essential concepts, namely characteristics, body structure, reproduction, classification and roles in human life are in accordance with the demands of the curriculum in Indonesia (Menteri Pendidikan dan Kebudayaan Republik Indonesia, 2018) in biology class of the first-year high school students in the domain of knowledge competence which is grouping fungi based on their characteristics, ways of reproduction, and linking their roles in life; and also in accordance with the competence of the psychomotor domain, that is presenting reports on the results of investigations on the diversity of fungi and their role in life. (Lankford, 2010; Hume & Berry, 2011; Yanti et al., 2020) informed that in determining the chosen idea, it must be in accordance with the applicable curriculum. This has been seen in the selection of the selected big idea/essential concept, the explanation is as follows, it is known that Kingdom Fungi have 6 Phylum namely Phylum Basidiomycota, Phylum Ascomycota, Phylum Glomeromycota, Phylum Blastocladiomycota, Phylum Chytridiomycota, and Phylum Neocallimastigomycota (Money, 2016). Otherwise, ac-cording to (Richards et al., 2012) there are 4 Phylum, namely Phylum Basidiomycota, Phylum Ascomycota, Phylum Zygomycota and Phylum Chytridiomycota. However, in this article only discussed about the Phylum Basidiomycota, especially represented by the macro Basidiomycota because the macro Basidiomycota is the largest member of the Phylum Basidiomycota, it is easy for students to see and learn from cultivation activities; Likewise, the sequence of big ideas/important concepts starting from an understanding of the characteristics, structure, reproduction, classification and role in human life is in accordance with the statements in the Basic Competencies. Characteristics, structure, reproduction, classification and role in human life are big ideas/ important concepts in learning to understand about fungi (Science, 2017; Moore et al., 2005; Zhang et al., 2010; Meneghetti et al., 2017).

Furthermore, knowledge in describing or outlining each big idea/important con-cept can be seen from the answers to questions in the CoRe instrument. Questions number 1, 2, 3 and 4 relate to the depth and breadth of the material in accordance with the demands of Basic Competence. The material description of each essential concept of the characteristics, structure, reproduction, classification and role of fungi is taken from the Fungal Biology High School Learning Module in 2020 published by the Ministry of Education and Culture, and uses the journal articles mentioned in Table 1. There is an expansion of the concept to make it easier for students to understand Basidiomycota mushrooms compared to just relying on the descriptions listed in the Module.

The teacher's knowledge of embedding the concept of sustainability in three inte-grated aspects (social, economic and environmental) into the macro Basidiomycota material is found in the answers to questions number 5, 6, 7, 8, 14, 15 and 16 as follows: Selected context that fits the material The specific subject is the cultivation of Basidio-mycota mushrooms. The context of Basidiomycota mushroom cultivation is used by students to find Basidiomycota material according to the curriculum, namely charac-teristics, structure, reproduction, classification and roles in human life. In the social aspect, it is embedded in the discussion of the material characteristics, namely that mushroom farmers carry out cultivation activities according to the characteristics of saprophytic mushrooms, then use planting media in the form of residual organic matter from straw, sawdust; and if the conditions are humid, the temperature and humidity of the room and the growing media must be regulated, have filaments and have meispora, the planting media must be adjusted so as to allow the spores to germinate and the filaments to grow well. Social aspects are also embedded in the reproductive material of fungi, namely the cultivation of sowing spores on the growing medium, then a myce-lium is formed, a button appears until an umbrella-shaped fruiting body structure is seen (Pitjeng-Mosabala & Rollnick, 2018; Taylor et al., 2009). The social aspect is also embedded in the mushroom classification material, that in mushroom cultivation ac-tivities, mushroom farmers must determine the type or species of mushroom being cultivated. The role of Basidiomycota is also part of the social aspect, namely the culti-vation of Basidiomycota mushrooms is a human activity to obtain nutritious food and medicine for health. (United Nations Educational scientific and cultural organization, 2005; Rieckmann, M. Mindt, L. and Gardiner, 2017; Gnansounou & Pandey, 2017; Mikalauskiene et al., 2018) mentions that food security, agriculture and health are social aspects.

In the economic aspect, the structure and reproduction of the Basidiomycota ma-terial, it is known that the cultivation of Basidiomycota mushrooms can be profitable so that it becomes a source of income (Gu et al., 2019; Martínez-Ibarra et al., 2019). The income of Basidiomycota Macro mushroom farmers is obtained at harvest when the mushrooms have an umbrella-shaped structure consisting of parts, namely the hood (cap or pileus), blade (lamella), fruiting body stalk (stape or stalk), ring (annulus). En-vironmental aspects are embedded in the role material when mushroom growing media is beneficial for the environment because it uses waste in the form of wood saws made in the form of baglog (Gu et al., 2019). Then the baglog waste is reused for plant fertilizer and planting media for other fungi Kulshreshtha (2021), which in the process uses Ba-sidiomycota mushrooms (Gu et al., 2019; Gowda N.A et al., 2021).

The pedagogy to teach the concept of sustainability embedded in the Basidiomy-cota material can be explained in the answers to questions 9, 10, 11, 12 and 13 in the CoRe instrument. The Problem Based Learning model starts with choosing a project topic, pre communicative activities, asking essential questions, designing a project plan, creating a project timeline, finishing the project, assessing the project results, and evaluating the project (Hamidah et al., 2020).

Students have projects to solve challenging problems on the topic of real-world problems (Grant, 2002; Goodman & Stivers, 2010; Dias et al., 2017) that occur in the cul-tivation of Basidiomycota mushrooms. The challenging activity in this Project Based Learning model is an exploration-based activity in the cultivation of Basidiomycota mushrooms, with the first problem being how the cultivation of Basidiomycota mush-rooms can produce products that are useful for food, health, and can be used as a source of income, explained with supporting evidence. The second problem is how the culti-vation activities do not produce waste that can cause negative impacts on the envi-ronment and describe the answers along with the waste handling products. The an-swers to questions from the mushroom cultivation case are presented in the form of a video as information for farmers and the community to understand. Cultivation of macro Basidiomycota mushrooms such as oyster mushrooms, straw mushrooms, button mushrooms and so on. It is known that Basidiomycota mushroom cultivation uses spent mushroom substrate. Spent mushroom substrates can cause environmental pollution, therefore action must be taken not to damage the environment.

4 CONCLUSION

Sustainability pedagogical content knowledge in the Basidiomycota material produced using the CoRe instrument, it appears that three aspects of sustainable development are embedded in the Basidiomycota material. Using the Project based learning model with the context of Basidiomycota mushroom cultivation was constructed to find the characteristics, structure, classification and reproduction through fungal plant activities (social aspect); the social aspect is also seen in the role of mushrooms as food ingredients that contain good nutrition for human health; the concept of the structure of Basidiomycota mushrooms was also found through mushroom harvesting activities which were associated with the income of mushroom farm-ers (economic aspect); and realizing a role for Basidiomycota to process spent mush-room substrate into fertilizer, as well as substrate for other fungi (environmental aspect).

REFERENCES

- Al Ulya, A. N., Leksono, S. M., & Khastini, R. O. (2017). Biodiversitas Dan Potensi Jamur Basidomycota Di Kawasan Kasepuhan Cisungsang, Kabupaten Lebak, Banten. Al-Kauniyah: Jurnal Biologi, 10(1), 9–16. https://doi.org/10.15408/kauniyah.v10i1.4513
- Berger, R. G., & Ersoy, F. (2022). Improved Foods Using Enzymes from Basidiomycetes. *Processes*, 10(4). https://doi.org/10.3390/pr10040726
- Dias, M., Brantley-dias, L., Dias, M., & Kennesaw, L. B. (2017). The Interdisciplinary Journal of Problem-based Learning book review Setting the Standard for Project Based Learning : A Proven Approach to Rigorous Classroom Instruction. 11(2).
- Ernawati, T., & Susanti, S. (2021). E-Modul Ipa 2 Untuk Pembelajaran Mandiri Di Masa Pandemi Covid-19. *KoPeN: Konferensi Pendidikan Nasional*, 3(1), 107–114. http://ejurnal.mercubuana-yogya.ac.id/index.php/Prosiding_KoPeN/article/view/1658

- Evans, N. S., Stevenson, R. B., Lasen, M., Ferreira, J. A., & Davis, J. (2017). Approaches to embedding sustainability in teacher education: A synthesis of the literature. *Teaching and Teacher Education*, 63, 405–417. https://doi.org/10.1016/j.tate.2017.01.013
- Gnansounou, E., & Pandey, A. (2017). Classification of Biorefineries Taking into Account Sustainability Potentials and Flexibility. In *Life-Cycle Assessment of Biorefineries*. Elsevier B.V. https://doi.org/10.1016/B978-0-444-63585-3.00001-2
- Gowda N.A, N., Gurikar, C., & A.C, L. (2021). Mushroom Cultivation: A Sustainable Solution for the Management of Agriculture Crop Residues. In S. Kulshreshtha (Ed.), *Recent Advances in Mushroom Cultivation Technology and its Application (Volume - 1)* (1st ed., Issue September, pp. 17–26). Bright Sky Publications. https://doi.org/10.22271/bs.book.20
- Gu, X., Lai, Q., Liu, M., He, Z., Zhang, Q., & Min, Q. (2019). Sustainability assessment of a Qingyuan mushroom culture system based on emergy. Sustainability (Switzerland), 11(18), 1–13. https://doi.org/10.3390/su11184863
- Hamidah, H., Rabbani, T. A. S., Fauziah, S., Puspita, R. A., GAsalba, R. A., & Nirwansyah. (2020). *HOTS-Oriented Module: Project Based Learning*.
- Herremans, I. M., & Reid, R. E. (2002). Developing awareness of the sustainability concept. *Journal of Environmental Education*, 34(1), 16–20. https://doi.org/10.1080/00958960209603477
- Hiola, S. F. (2011). Keanekaragaman Jamur Basidiomycota Di kawasan Gunung Bawakaraeng (Studi Kasus: Kawasan Sekitar Desa Lembanna Kecamatan Tinggi Moncong Kabupaten Gowa). *Bionature*, 12(2), 93–100. https://ojs.unm.ac.id/bionature/article/view/1402
- HU, J. (2014). A critical review of Pedagogical Content Knowledge' components: nature, principle and trend. *International Journal of Education and Research*, 2(4), 411–424. http://www.ijern.com/journal/April-2014/36.pdf
- Hume, A., & Berry, A. (2011). Constructing CoRes-a Strategy for Building PCK in Pre-service Science Teacher Education. *Research in Science Education*, 41(3), 341–355. https://doi.org/10.1007/s11165-010-9168-3
- Khayati, L., & Warsito, H. (2016). Kawasan Lindung KPHP Sorong Selatan (The Biodiversity of Fungi from Basidiomycetes Class in KPHP Sorong Selatan 's Protected Area). *Prosiding Symbion (Symposium on Biology Education)*, 8, 213–222.
- Lankford, D. (2010). Examining the Pedagogical Content Knowledge and Practice of Experienced Secondary Biology Teachers for Teaching Diffusion and Osmosis.
- Lehane, L., & Bertram, A. (2016). Getting to the CoRe of it: A review of a specific PCK conceptual lens in science educational research. *Educacion Quimica*, 27(1), 52–58. https://doi.org/10.1016/j.eq.2015.09.004

- Lestari, F., Febrianti, Y., Biologi STKIP PGRI Lubuklinggau Air Kuti, P., Linggau Tim, L. I., Lubuklinggau, K., & Selatan, S. (2018). *Identifikasi Makrofungi Ordo Polyporales Di Kecamatan Purwodadi Kabupaten Musi Rawas*. 2(1), 25.
- Loughran, J., Berry, A., & Mulhall, P. (2012). Understanding and developing science teachers' pedagogical content knowledge. In *Professional learning volume 12* (Vol. 12). https://doi.org/10.3217/jucs
- Martínez-Ibarra, E., Gómez-Martín, M. B., & Armesto-López, X. A. (2019). Climatic and socioeconomic aspects of mushrooms: The case of Spain. Sustainability (Switzerland), 11(4), 27–29. https://doi.org/10.3390/su11041030
- Meneghetti, G., Bramuzzo, S., Callegaro, E., Guidolin, L., Irato, P., & Santovito, G. (2017). the Kingdom of Fungi in Primary School: an Educational Research in Biology Field. *EDULEARN17 Proceedings*, 1(August), 102–110. https://doi.org/10.21125/edulearn.2017.1023
- Mikalauskiene, A., Narutaviciute-Cikanauske, R., Sarkiunaite, I., Streimikiene, D., & Zlateva, R. (2018). Social aspect of sustainable development: Issues of poverty and food shortage. *Montenegrin Journal of Economics*, 14(2), 59–78. https://doi.org/10.14254/1800-5845/2018.14-2.4
- Money, N. P. (2016). Fungal Diversity. In *The Fungi: Third Edition* (Third Edit). Elsevier Ltd. https://doi.org/10.1016/B978-0-12-382034-1.00001-3
- Moore, D., Fryer, K., Quinn, C., Roberts, S., & Townley, R. (2005). How much are your children taught about fungi in school? *Mycologist*, 19(4), 152–158. https://doi.org/10.1017/S0269915X05004040
- Moreno-Camacho, C. A., Montoya-Torres, J. R., Jaegler, A., & Gondran, N. (2019). Sustainability metrics for real case applications of the supply chain network design problem: A systematic literature review. *Journal of Cleaner Production*, 231, 600–618. https://doi.org/10.1016/j.jclepro.2019.05.278
- Mulhall, P., Berry, A., & Loughran, J. (2003). Frameworks for representing science teachers pedagogical content knowledge. *Asia Pacific on Science Learning and Teaching*, 4(2), 1–25. http://www.ied.edu.hk/apfslt/download/v4_issue2_files/mulhall.pdf
- Nilsson, P., & Karlsson, G. (2019). Capturing student teachers' pedagogical content knowledge (PCK) using CoRes and digital technology. *International Journal of Science Education*, 41(4), 419–447. https://doi.org/10.1080/09500693.2018.1551642
- Nilsson, P., & Loughran, J. (2012). Exploring the Development of Pre-Service Science Elementary Teachers' Pedagogical Content Knowledge. *Journal of Science Teacher Education*, 23(7), 699–721. https://doi.org/10.1007/s10972-011-9239-y
- Nolet, V. (2009). Preparing sustainability-literate teachers. *Teachers College Record*, 111(2), 409–442. https://doi.org/10.1177/016146810911100207

- Pitjeng-Mosabala, P., & Rollnick, M. (2018). Exploring the development of novice unqualified graduate teachers' topic-specific PCK in teaching the particulate nature of matter in South Africa's classrooms. *International Journal of Science Education*, 40(7), 742–770. https://doi.org/10.1080/09500693.2018.1446569
- Purvis, B., Mao, Y., & Robinson, D. (2019). Three pillars of sustainability: in search of conceptual origins. Sustainability Science, 14(3), 681–695. https://doi.org/10.1007/s11625-018-0627-5
- Richards, T. A., Jones, M. D. M., Leonard, G., & Bass, D. (2012). Marine fungi: Their ecology and molecular diversity. *Annual Review of Marine Science*, *4*, 495–522. https://doi.org/10.1146/annurev-marine-120710-100802
- Rieckmann, M. Mindt, L. and Gardiner, S. (2017). Education for Sustainable Development Goals Learning Objectives.
- Science, T. L. H. of. (2017). *Student Activity Guide: Fungi Exploration*. http://beetlesproject.org/cms/wp-content/uploads/2017/10/Fungi-Exploration.pdf
- Shulman, L. S. (1986). Those Who Understand: A Conception of Teacher Knowledge. *American Educator*, 10(1), 4–14. https://doi.org/10.3102/0013189X015002004
- Slarwamin, N., Pudjiastuti, A. Q., & Sumarno, S. (2021). Keberlanjutan Program Pertanian Keluarga Dalam Masa Pandemi Covid-19. Jurnal Sosial Ekonomi Pertanian, 17(2), 65– 76.
- Sudrajat, A. S. E. (2018). Pilar Pembangunan Berkelanjutan: Kajian Pengelolaan Sumber Daya Alam dan Lingkungan Kampung Batik Rejomulyo Semarang Timur. *Riptek*, 12(I), 83– 88.
- Sun, P., Li, X., Dilokpimol, A., Henrissat, B., de Vries, R. P., Kabel, M. A., & Mäkelä, M. R. (2022). Fungal glycoside hydrolase family 44 xyloglucanases are restricted to the phylum Basidiomycota and show a distinct xyloglucan cleavage pattern. *IScience*, 25(1). https://doi.org/10.1016/j.isci.2021.103666
- Susan, D., & Retnowati, A. (2017). Catatan Beberapa Jamur Makro Dari Pulau Enggano: Diversitas Dan Potensinya. In A. Agusta, K. D. S. Yulita, G. Semiadi, A. Kanti, S. Sundari, E. Triana, K. Dewi, & D. S. Rini (Eds.), *Berita Biologi* (Vol. 16, Issue 3, pp. 243–256).
 Pusat Penelitian Biologi-LIPI. https://doi.org/10.14203/beritabiologi.v16i3.2939
- Taylor, T. N., Krings, M., & Taylor, E. L. (2009). Fungi, Bacteria, and Lichens. In T. N. Taylor, M. Krings, & E. L. Taylor (Eds.), *Paleobotany: The Biology and Evolution of Fossil Plants* (Second, pp. 71–119). Academic Press Elsevier Inc. https://doi.org/10.1016/b978-0-12-373972-8.00003-6
- Taylor, T. N., Krings, M., & Taylor, E. L. (2015). Basidiomycota. In S. C. Watkinson, B. Lynne,
 & N. P. Money (Eds.), *Fossil Fungi* (Third Edit, pp. 173–199). Elsevier Inc. https://doi.org/10.1016/b978-0-12-387731-4.00009-8

- United Nations Educational scientific and cultural organization. (2005). Unesco and Sustainable Development. Sustainable Development, 44. http://unesdoc.unesco.org/images/0013/001393/139369e.pdf
- Valadares, F., Gonçalves, T. A., Gonçalves, D. S. P. O., Segato, F., Romanel, E., Milagres, A. M. F., Squina, F. M., & Ferraz, A. (2016). Exploring glycoside hydrolases and accessory proteins from wood decay fungi to enhance sugarcane bagasse saccharification. *Biotechnology for Biofuels*, 9(1), 1–12. https://doi.org/10.1186/s13068-016-0525-y
- Volk, T. J. (2013). Fungi. Encyclopedia of Biodiversity: Second Edition, 3, 624–640. https://doi.org/10.1016/B978-0-12-384719-5.00062-9
- Wahyudi, T. R., P, S. R., & Azwin, A. (2016). Keanekaragaman Jamur Basidiomycota di Hutan Tropis Daratan Rendah Sumatera Indonesia, (Studi Kasus di Arboretum Fakultas Kehutanan Universitas Lancang Kuning Pekanbaru). Wahana Forestra: Jurnal Kehutanan, 11(2), 21–33. https://doi.org/10.31849/forestra.v11i2.148
- Yanti, M., Riandi, & Suhandi, A. (2020). Pedagogical content knowledge (PCK) of science teachers based on content representation (CoRe). *Journal of Physics: Conference Series*, 1521(4). https://doi.org/10.1088/1742-6596/1521/4/042119
- Zhang, B., Looi, C. K., Seow, P., Chia, G., Wong, L. H., Chen, W., So, H. J., Soloway, E., & Norris, C. (2010). Deconstructing and reconstructing: Transforming primary science learning via a mobilized curriculum. *Computers and Education*, 55(4), 1504–1523. https://doi.org/10.1016/j.compedu.2010.06.016