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ABSTRACT 
 
 

To establish the relationship between the surface area and volume of an egg has been a 
challenge to answer.  
 The volume and the surface area, of an egg are spherically related in the following equation: 

As=kV2/3     (1) 
where As, surface area; V, volume and k constant. 
 A more definite formula, ellipsoid, for the computation of the volume of the egg, 

V=πLB2/6(1+2/5c2+1/5c1
2+3/35c2

2)  (2) 
where L, longitudinal length of the egg and B, breadth measured halfway between the poles of the 
egg. 
 Alternative formula for the volume:  

V=πLB2
max/6(1+2/5c2–4/5c1

2+3/35c2
2)  (3) 

where Bmax is the maximum breadth of the egg. 
Experimental results using k=4.8359 in equation (1) resulted in a good estimate for the 

surface area.  Further, a good estimate of the actual volume obtained in formulas (1) and (2) of the 
sample eggs. 

The readers are encouraged to pursue similar studies using a variety of eggs from different 
breeds. 
Keywords: Egg, Surface  area,   sphere, ellipsoid, volume 
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Section 1. Introduction 
 
             The methods for measuring egg size range from taking weights and linear measures to 
observing water displacement.  One little-used approach is to estimate egg parameters from 
photographs. Estimating egg size from photographs was first pioneered by Paganelli et al. (1974), 
who traced the outlines of eggs using a planimeter to calculate volume and surface area.  The 
technique described in this study is basically a modification of the above technique.  While 
Paganelli et al used an automated computer analysis procedure to read data directly from digital 
photographs, eliminating the need to trace each egg, this study actually measured the egg by the 
length, breadth, maximum breadth, height.   

Moreover, this present study aimed to illustrate the mathematical investigation of a real egg, 
using the basic principles of analytic geometry and calculus which are usually presented in 
classroom discussions.   

It can be recalled that the surface area of an egg is occasionally desired or needed for 
computations of shell permeability or probable period of incubation.  However, it is not easily 
measured directly, and cannot be computed from measurements of length and (Maximum) breadth 
without possible errors.  An indirect method is to measure the volume of the egg, for instance, by 
total immersion in water or other liquid of known density, and hence to estimate the surface area, 
there is a relation between area and volume.   

 
 

1.1 Statement of the Problem 
This study aimed to discuss and find good estimations of surface area and volume of the egg 

on the basis of quantities that can be measured easily.  Specifically, it aimed to: 
1. carry out an experiment to determine the volume and surface area       
      of a given hen’s egg; 
2. develop a mathematical model to compute the volume and surface area of a given egg; 

and 
3. compare the experimental results with the results obtained via the   
      mathematical model. 

 
1.2 Significance of the Study 
 Mathematics and the real world are connected with each other in a rather direct way.  This 
does not only increase the attractiveness of the work in the students' eyes, but it also brings them in 
touch with applications of mathematics on objects from daily life.  Exploratory activities range from 
measurements, calculations, and figural analysis to functional analysis of models of physical 
objects.  

The present study on the volume and surface area of an egg specifically looked into 
establishing a relationship between these two parameters.  A sufficient knowledge about the volume 
and surface area allows one to determine some other specific characteristics of the egg like 
permeability and incubation period.  

Results of this study could help facilitate research on real objects that are otherwise difficult 
to measure.  For example, if students want to think of the shape of big objects like the main span of 
a suspension bridge and that of small objects like the shape of the plants cells plant, the size of the 
bacteria populations, and so on, they can use methods and techniques that are also applied by 
professionals in the field of space research, medicine, geography, and forensic. 
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1.3 Research Methodology 
 This study was carried out in analytic and experimental approaches.  The analytic approach 
involves utilizing existing theories to establish the model to be used. 
 The experimental aspect of the study was used to generate data which served to verify the 
outputs of the model.  Twenty-five randomly selected eggs bought from the local market were used 
to generate data on volume and surface area. 

In finding the volume of the egg, the following was undertaken: the glass beaker was filled 
by with water until the water level indicated a volume of 200 ml with the egg below the waterline; 
the water was poured from the beaker into the calibrated measuring cylinder and the volume was 
noted; Calibrate the beaker by filling it without the egg until the water level of 200 ml was reached; 
the contents of the glass beaker were again poured into the calibrated measuring cylinder and the 
volume was noted.  The difference of the measured volumes is the volume of the egg. 

For the surface area, the following scheme was done: the egg was covered with pieces of 
kitchen foil such that few wrinkles as possible were formed and then the total area of the pieces of 
kitchen foil was measured. 

 
1.4 Scope and Limitations 
 The subjects of the present study were limited to the commercial hen eggs available in the 
market.  Sample eggs were randomly chosen and factors such as chicken breed, time of display and 
place of origin were not considered. The external volume was considered in effect the shell-part of 
the egg was included in the volume value. Surface area was determined by elementary measurement 
techniques.  Some error in the actual measures might have occurred especially in the type of 
material used. 
 
1.5 Definition of Terms 

 
Breadth.   It is the measure or dimension from side to side such as width. 
Egg.  It is the zygote, resulting from fertilization of the ovum for most birds and reptiles.  
Ellipsoid.  It is a type of quadric surface, a surface of an equation of second degree in three-
dimensional Cartesian Coordinates that is a higher dimensional analogue of an ellipse.  
Mathematical model.  It is a representation of the essential aspects of an existing system which 
presents knowledge of that system in usable form. 
Prolate spheroid.  This refers to a spheroid that is pointy instead of squashed, i.e., one for which the 
polar radius is greater than the equatorial radius.  A symmetrical egg (i.e., with the same shape at 
both ends) would approximate a prolate spheroid.  A prolate spheroid is a surface of revolution 
obtained by rotating an ellipse about its major axis. 
Space figure or three-dimensional figure.  It is a figure that has depth in addition to width and 
height.  Everyday objects such as a tennis ball, a box, a bicycle, and a redwood tree are all examples 
of space figures.  Some common simple space figures include cubes, spheres, cylinders, prisms, 
cones, and pyramids. A space figure having all flat faces is called a polyhedron.  A cube and a 
pyramid are both polyhedrons; a sphere, cylinder, and cone are not.  
Sphere.  It is a solid bounded by a uniformly curved surface, every point of which is equally distant 
from a point within, called the center.  The distance from the center to the surface of the sphere is 
called its radius.  Any cross-section of a sphere is a circle.  If r is the radius of a sphere, the volume 
V of the sphere is given by the formula V = 4/3 × π  × r3.  The surface area S of the sphere is given 
by the formula S = 4 × π  × r2.  
Surface area.  This refers to the total area of all the faces of the figure. 
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Volume.  It is a measure of how much space a space figure takes up. It is used to measure a space 
figure just as area is used to measure a plane figure.  
 
Section 2. RESULTS AND DISCUSSIONS 
 

The surface area of an egg is occasionally desired or needed for computations of shell 
permeability or probable period of incubation.  This chapter explores how the volume and the 
surface area of an egg can be related. 
 The determination of the volume of an egg can be made as easy as possible.  One way is to 
measure the amount of water displaced when the egg is placed in a glass beaker.  

In the absence of a calibrated measuring cylinder in which the egg fits, one can use a non-
calibrated glass beaker and a calibrated measuring cylinder and employ the following procedure: 
filling the glass beaker with water until the water level indicates a volume of 200 ml with the egg 
below the waterline; pouring the water from the beaker into the calibrated measuring cylinder and 
noting down the volume; calibrating the beaker by filling it without the egg until the water level of 
200 ml is reached;  pouring again the contents from the glass beaker into the calibrated measuring 
cylinder and noting down the volume.  The difference of the measured volumes is the volume of the 
egg. 

An experimental determination of the surface area of the egg's surface without breaking the 
egg is not easy.  One may think of the following method: covering the egg with pieces of kitchen 
foil such that few wrinkles as possible are formed and then measuring the total area of the pieces of 
kitchen foil.  An alternative way could be: painting the egg and then rolling the egg on a piece of 
paper such that the area of the imprint corresponds with the surface area of the egg's surface.  This 
method though remains tricky and this is the essence of the study comes from.  

Experimental determination of quantities such as perimeter, surface area, and volume of an 
egg can be done, but in particular the determination of the surface area is difficult, error-prone and a 
real challenge.  In the course of an investigation, students can consider the question whether it 
makes sense to repeat a measurement many times and compute the mean of the results.  This is done 
in hopes of increasing the accuracy of results. 

This study presents a more indirect determination of the surface area and the volume of an 
egg.  Using an adequate mathematical description of the shape of the egg, the researcher establishes 
good estimations of surface area and volume of the egg on the basis of quantities that can be 
measured easily.  

The descriptive quality of such mathematical model can be evaluated on the basis of the 
previously found experimental data.  
 
2.1 Research Models 
 Since an egg is somewhat a sphere in form, the present study is based on the characteristics 
of a sphere, particularly its volume and surface area.  One can, therefore, start with the formulas for 
finding the surface area and volume of the sphere.  
 Reviewing a classical result in solid geometry, known as the Cavalieri’s Theorem could be 
of help. 
 Theorem 1(CAVALIERI’S): If in two solids of equal altitude the sections made by planes parallel 
to and at the same distance from their respective bases are always equal, the volumes of the solids 
are equal. 
Proof: Assuming a plane surface of area B is moved to a distance h in a direction perpendicular to 
itself, one can generate a solid of volume Bh; this solid can be called an elemental solid.  
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    Let the two solids P and Q rest on the same horizontal planes, and common altitude H be 
divided into n equal parts each equal to h.  Through the points of division of the altitude pass planes 
parallel to the horizontal plane of the basses.  These planes will intersect the two solids in sections 
S1, S2, . . . Sn-1 parallel to the basses and distant h apart. 

On the basses S0 of P and Q, and on each of the parallel sections S1, S2, . . ., Sn-1 as basses, 
elemental solids of height h are constructed.   Then the volume of each elemental solid is h times 
the area of its base Si. 
  Denoting P’ the volume of the elemental solids belonging to solid P, and  Q’ the volume of 
the elemental solids belonging to Q, and since the bases of corresponding elemental solids in P and 
Q are equal by hypothesis, and they have the same altitude h, one finds that their volumes are equal.  
Therefore, since the number of elemental solids is the same in P and Q, one can have   P’ = Q’.  
Suppose the number of subdivision n is increased indefinitely, thereby increasing the number of 
elemental solids indefinitely and decreasing their altitudes h in a corresponding manner, one can 
note that P’ will approach P as a limit, and Q’ will approach Q as a limit.  But P’ and Q’ are two 
variables which are always equal.  Hence by a theorem on limits which states that If two variables 
are always equal and each approaches a limit, the limits are equal, one can come up with P = Q. █ 
 Using Cavalieri’s Theorem, one can derive the formula for the surface area and volume of 
the sphere. 
Theorem 2. The surface area As of a sphere is given by As = 4 r2. 
Proof:  Considering the hemisphere cut from the sphere of center O and radius r, one can pass two 
planes distant y apart and parallel to the base of the hemisphere, cutting the hemisphere in two 
circles of radii r1 and r2.  If one assumes arc DF = chord DF = l (the error introduced by taking arc 
DF = chord DF may be made as small as one pleases by taking y sufficiently small, the surface of 
the hemisphere included between these planes is equal to the lateral surface of the inscribed frustum 
of a right circular cone. This frustum has a slant height l, and an altitude y, and base radii r1 and r2. 
Its lateral surface is, by (1) As = (2πr1 + 2πr2)l/2 or As = (r1+r2)l.                                  

Let B be the midpoint of chord DF.  Then OB is perpendicular to chord DF and within the 
limits of the approximation, it is equal to the radius r of the sphere.  One can therefore, denote the 
radius AB of the mid-section of the frustum by rt  since rt  is the mid-section of a trapezoid, (2) rt = 
(r1+r2)/2                                                   Since angles AOB and FDE have their sides respectively 
perpendicular, one can observe that they are equal and right triangles AOB and FDE are similar.  
Therefore, (3) rt/r = y/l or rt = ry/l.                                  
 Substituting in equation (3) the value of rt from equation (2), one gets 
(r1 + r2) / 2 = ry/l. Substituting this value of (r1 + r) / 2 in formula (1), one obtains As = 2 ry.  By 
thinking of a sphere being formed by an indefinitely large number of these frustum, the sum of this 
altitudes is 2r, it is evident that the formula for the surface of a sphere of radius r is As = 2 r(2r) or 
As = 4 r2. █ 
Theorem 3. The volume V of a sphere is given by V = 4/3πr3. 
Proof: Considering the hemisphere cut from the sphere of center O and radius r, one can compare 
this hemisphere with the solid which results from removing a right circular cone of base radius r 
and altitude r from a right circular cylinder of the same base and altitude. 

Two solids are placed so that their basses lie on the same plane.  A plane is passed parallel 
to and distant y from the bases, cutting the hemisphere in a small circle A and the other solid in a 
section A’ (area bounded in a two concentric circle).  The radius of the circle A is denoted by ra, the 
inner radius of section A’ by x (the outer radius of section A’ is obviously r), and (1) A = ra

2 and 
(2) A’ = (r2

 - x2) are given. 
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Since the legs of right triangle CDE are each r, θ = 45˚. Whence x = y. Applying the 
Pythagorean theorem to right triangle OO’B, one has ra

2 = r2 - y2. Substituting this value of ra
2 in 

(1), and putting x = y in (2), one obtains 

A = π(r2 – y2) and A’ = π(r2 – y2) 

Hence, A = A’. 

Since the altitude of each solid is equal to r and since A = A’, it follows from  

Cavalieri’s theorem that the volumes of the two solids are equal. But,  

denoting the volume of the constructed solid by V1, one has 

V1 = volume of cylinder–volume of cone or V1 = (πr2)r – 1/3(πr2)r = 2/3πr3. 

Therefore, the volume of the hemisphere is V1 = 2/3πr3. 

Hence, the volume of a sphere of radius r is V = 4/3πr3. █ 
Consider a solid with a surface area As and volume V. The following theorem establishes a 

relation between AS and V. 
Theorem 4. Let As and V denote the surface area and volume of a sphere, respectively, then As = 
kV2/3 where  k is a “dimensionless” constant. 
Proof: Using Theorems 2 and 3, V = 4/3πr 3 and As = 4πr 2 
 One can try to express As in terms of V. 
           As = 4πr 2 = 4/3πr 3 (3/r) = V (3/r) 
 Then, (4πr 2 = V (3/r))2/3 
                      (4πr 2)^2/3 = V2/3(3/r)2/3 

                     {(4πr 2)/ (3/r)}2/3 = V2/3 

                     (4/3πr 3)2/3 = V2/3 

                     (4/3π)2/3r2  = V2/3  
then multiply the equation by  4π / (4/3π)2/3 . One obtains 4πr 2 = 4π / (4/3π)2/3 V2/3.                       
But one knows that 4πr 2 = As.  So, As =  4π / (4/3π)2/3 V2/3 or As = kV2/3 where the value of 
k=4.8359.  This is true for a sphere.  █ 

Since an egg is not perfectly spherical in form, the value for k varies according to the shape 
of the egg being considered. One can now turn to approximate the volume of an egg. 
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Model 1. Equatorial Length Approach  
 
    
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.1. A. Cylinder.  B. Bicone  C. Two Cones  D. A Circle Circumscribes an Ellipse 
 

The parametric equation of the longitudinal section of an egg may be taken (Fig.1D) as (1) 
y=b sinθ and (2) x = a cosθ(1 + c1 sinθ + c2 sin2θ +etc),                           
where θ is the "eccentric angle," a is the semi diameter at the true equator (i.e. halfway between the 
two ends of the egg), b is the half-length of the egg, c1 and c2 are coefficients that vary from egg to 
egg and have to be found experimentally, and the terms labeled "+ etc." can be usually neglected c1 
and c2 are usually quite small, so that c1

2 and c2
2 and c1 c2 can be neglected. 

Slicing the egg parallel to the equator (perpendicular to the long axis of the egg) into small 
thicknesses dy, gives one various elements of volume dV = πx2dy and total volume of the egg is (3) 
V=  πx2dy which is evaluated from –π/2 to π/2. Ignoring terms that include negligible coefficients, 
one has  
x2 = a2cos2θ(1+2c1sinθ+2 c2sin2θ) and dy = b cos θ dθ.  

So, (4) V = πa2b   cos3θ(1 + 2c1sinθ + 2 c2sin2θ) dθ is evaluated from      –π/2 to π/2. The 
complete integral from  –π/2 to π/2 of the middle term, therefore vanishes (being -cos4θ) and the 
integral reduces to (4a) V = πa2b   (cos3θ + 2c2sin3θsin2θ) dθ and by writing cos3θ=cosθ(1-sin2 

θ), this integrates to  
(5) V=4π/3[(a2b) (1+2/5c2)]                                           
 If the length of the egg is L =2b and its equatorial (not necessarily maximum) breadth is B 
=2a this equation takes form (5a)V = π/6[(LB2) (1 + 2/5c2)].                                          

If c2 is zero this reduces to V = π/6[(LB2)], the volume of an ellipsoid of revolution, and it 
does not depend on c1 at all, provided we were justified in assuming that c1 is comparatively small 
and c2 is negligible. c2 can be either positive or negative. With most species and individual parents, 
c2 is negative, so the volume of the egg is less than the volume of the circumscribing ellipsoid.  
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The effect of using Bmax instead of Bequatorial in the parametric equation                                          
y = b sinθ and x = a cosθ(1 + c1 sinθ + c2 sin2θ),  is the maximum value of x that is obtained when 
dx/dy is zero or when dx/dθ = 0. 
 Let θm be the value of θ that makes x a maximum. If c1 = c2 = 0, the equation of an ellipse, 
one gets (6) dx/dθ = -a sin θ, and this is zero when θ = 0. This is a correct solution. 

Now let c2 = 0 but let c1 be non-zero.  Then, recalling that sin θm is assumed small and 
therefore that cos θm is very near unity, one gets  
(7) sin θm = [- 1 + sq(1 + 4c1

2)]/2c1                                      
Recalling that c1 is much less than unity, the square root term is very nearly (1 + 2c1

2), so 
that (7a) sin θm = c1 is very nearly.                                      

If c1 and c2 are both non-zero, but cos θm is very near unity (sin θm being small), one gets a 
cubic equation for sin θ as follows: 
(8) c2sin3θm + c1sin2θm + (1 – 2c2)sinθm – c1 = 0                             

 
For small values of sin θm, c1, and c2 then from (7a), then the value of the diameter is (9) B max /B = 
(1 – c1

2/2)(1 +c1
2), then (10) Bmax/B = 1 + ½ c1

2.                                                                                
so one has derived the formula for volume: 
(11) V = π LB2/6 (1 + 2/5 c2 + 1/5 c1

2 + 3/35 c2
2),                                

Model 2. Ellipsoid Approach  
There is an evident shortfall of the first model. In most egg samples, the widest breadth is 

not halfway between the poles.  This is improved by the model proposed by Tatum. 
Model 1 expresses the volume, V, in terms of the length, L, and the breadth, B, measured 

half way between the poles of the egg.  It generally relied on the assumption that the shape of an 
egg can be described by the revolution about its long axis of an oval figure whose parametric 
equations are (1) y = b sinθ and  
(2) x = a cosθ(1 + c1 sinθ + c2 sin2θ), where c1 and c2 are coefficients representing the departure of 
the oval from an ellipse.  In particular, c1 represents a departure from symmetry, being zero for a 
symmetric egg. 
 The said formula for V was developed to first order in c1 and c2(In this order it is 
independent of c1).  The formula for Bmax /B was developed to second order in c1 and c2(In this 
order it is independent to c2).  So in order to express V directly in terms of L and Bmax both parts 
must be carried in the same order where c1 and c2 are carried to second order. 
 For the volume in terms of the length and equatorial breadth in the second order in c1 and c2, 
one has: (3) V = π LB2/6 ( 1 + 2/5 c2 + 1/5 c1

2 + 3/35 c2
2),                                

 In retracing Model 1 Bmax/B, we can expect some small errors and Model 1 equation (8) 
should read (4) 3c2 sin3θm + 2c1sin2θm + (1-2c2)sin θm – c1 = 0.                             
 Enforcing Bmax/B correct to second order such that sin θm must also be taken to second 
order, one can come up with the following second order expression:  
(5)  sin θm = c1 + 2c1c2 the resulting expression for Bmax/B to second order is  
(6) Bmax/B = 1 + ½ c1

2.                                     
One can express V directly in terms of L and Bmax from equations (3) and (6) to second 

order in c1 and c2 which one can call as Model 2: 
       (7)  V = π LB2

max/6  ( 1 + 2/5 c2 - 4\5 c1
2 + 3\35 c2

2),                     
  
In Model 2, volume is determined by taking four measurements: length L, breadth B, maximum 
breadth Bmax, and height H as indicated by Fig.2.  
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Figure 2.  The Egg. 

The coefficient c1 is determined from the equation (6).  The value of sinθm is given by (8) 
sin θm = 1 – 2H/L so that c2 can be determined from the equation (5).  The volume can now be 
calculated from equation (7). 

 
2.2 Experimental Simulations 
 The accuracy of the two models using the 25 egg samples is now determined.  Table 1 
shows how the actual volume of the egg samples differed from the computed volumes using the two 
models.   

As seen from the table below, the actual volume did not significantly differ from the 
projected volume using either of the models. The computed F-value of 2.834 gave a p-value of 
0.065 which is above the alpha level of 0.05.   

Thus, it can be inferred that either models give a close estimate of the volume of the eggs. 
 
 

Table 1. Analysis of Variance between the actual volume and the model outputs. 
 
Source of Variation      Sum of Squares      df     Mean Squares  F 
 Model    1001  2      500.4        2.834ns 
 Error    12717  72      176.6 
 Total    13717  74 

 
 

Table 2. Correlations of actual volume with the model outputs. 
     r - value 
 Model 1   0.964** 
 Model 2   0.966** 
** - significant at alpha = .01 

This is further affirmed by the very significant correlation among the values in the three 
measurements as indicated in Table 2.  As seen in Table 2, the correlation between the actual 
volume and the expected volume based from Model 2 is 0.964 which is highly significant.  This 
indicates a very high accuracy of the model in approximating the volume of an egg.  Similarly, one 
finds the same observations with Model 1.   
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Table 3.  Analysis of Variance between the actual surface area and the model      
             outputs 
 Source of Variation      Sum of Squares        df         Mean Squares   F 
 Model     622     2        311.0                2.708ns 
 Error    8271    72        114.9 
 Total    8893            74 
 

Table 3 shows how the actual surface area of the egg samples differed from the computed 
surface area using the two models.  As shown in the table, the actual surface area did not 
significantly differ from the projected surface area using either of the models. The computed F-
value of 2.708 gave a p-value of 0.073 which is above the alpha level of 0.05.  Thus, it can be 
inferred that either models gives a close estimate of the surface area of the eggs. 

 
Table 4. Correlations of actual surface area with the model outputs. 
     
     r - value 
 Model 1   0.963** 
 Model 2   0.965** 
** - significant at alpha = .01 

This is further affirmed by the very significant correlation among the values in the three 
measurements as indicated in Table 4.  Moreover, according to Table 4, the correlation between the 
actual surface area and the expected surface area based from Model 2 is 0.963 which is highly 
significant. This indicates a very high accuracy of the model in approximating the surface area of an 
egg. Similar observations were seen with Model 1. 
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Section 3. SUMMARY AND RESEARCH DIRECTION 
 
 Using the sphere as a basis, the volume and the surface area of an egg are related in the 
following equation 

As = kV2/3     (1) 
where As and V denote the surface area and volume, respectively, while k is a constant. The value 
of k varies depending on how the egg deviates from or resembles the shape of the sphere. 
 Treating the egg as an ellipsoid, a more definite formula for the computation of the volume 
of the egg is 

V = π LB2/6 (1 + 2/5 c2 + 1/5 c1
2 + 3/35 c2

2)  (2) 
where L is the longitudinal length of the egg and B is breadth (measured halfway between the poles 
of the egg). 
 Observing that the maximum breadth is not necessarily halfway between the poles, one can 
have the following alternative formula for the volume:  

V = π LB2
max/6  ( 1 + 2/5 c2 – 4/5 c1

2 + 3/35 c2
2)  (3) 

where Bmax is the maximum breadth of the egg. 
 Experimental results indicate a good estimate of the actual volume of the sample eggs 
considered in the study. Using analysis of variance, it was revealed that the actual volume did not 
significantly differ from the volumes obtained in formulas (1) and (2).  

A consequent approximation of the surface area using k=4.8359 in equation (1) resulted in a 
good estimate for the surface area of the sample eggs.  
 With these results, the researcher encourages the readers to pursue similar studies directed to 
further tighten the relationship between the volume and surface area of an egg. The author suggests 
the use of a variety of eggs from different breeds. 
 Likewise, modeling problems on natural occurrences should be conducted to make 
mathematics more appealing and practical especially to non-mathematics practitioners. 
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APPENDIX  A. MEASUREMENT DATA OF THE 25 SAMPLE EGGS 
 

Egg No. L B Bmax H C1 Sinθm 
 

C2 
1 5.6 3.8 3.9 1.6 0.229416 0.428571 0.022845 
2 5.7 4 4.1 1.7 0.223607 0.403509 0.020114 
3 5.6 3.8 4 1.4 0.324443 0.5 0.028479 
4 5.7 4 4.1 1.6 0.223607 0.438596 0.024037 
5 5.6 4 4.3 1.5 0.387298 0.464286 0.014909 
6 5.7 4.1 4.4 1.5 0.382546 0.473684 0.017432 
7 5.7 4.3 4.4 1.7 0.215666 0.403509 0.020256 
8 5.7 4.4 4.5 1.5 0.213201 0.473684 0.027768 
9 5.9 4.4 4.6 1.6 0.301511 0.457627 0.023535 
10 5.8 4.5 4.7 1.7 0.298142 0.413793 0.01724 
11 6 4.3 4.7 1.8 0.431331 0.4 -0.00676 
12 5.8 4.6 4.9 1.7 0.361158 0.413793 0.009505 
13 6 4.3 4.5 1.9 0.304997 0.366667 0.009405 
14 5.8 4.7 4.9 1.8 0.29173 0.37931 0.012775 
15 5.9 4.8 5 1.7 0.288675 0.423729 0.019493 
16 6 4.8 4.9 1.9 0.204124 0.366667 0.016589 
17 6.1 4.8 5 2 0.288675 0.344262 0.008023 
18 6.1 4.7 5 1.9 0.357295 0.377049 0.003529 
19 6.2 4.8 5 1.9 0.288675 0.387097 0.014206 
20 6.4 4.8 5 1.9 0.288675 0.40625 0.01697 
21 6.4 5 5.2 2.3 0.282843 0.28125 -0.00023 
22 6.6 4.8 5 2.4 0.288675 0.272727 -0.0023 
23 6.6 4.9 5.1 2.3 0.285714 0.30303 0.002474 
24 6.5 5.2 5.3 2.1 0.196116 0.353846 0.015467 
25 6.8 5 5.2 2.3 0.282843 0.323529 0.005754 
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APPENDIX B. VOLUME AND SURFACE AREA MEASUREMENT DATA OF THE 25 
SAMPLE EGGS 
 

Egg 
No. 

V(Model 
1) Vwater 

V(Model 
2) 

A(model 
1) Awater 

A(Model 
2) 

1 44.6 45 42.3 59.47 61.18 59.52 
2 50.2 46 47.8 64.37 62.08 64.42 
3 46.9 45 42.3 59.82 61.18 60.01 
4 50.2 46 47.7 64.44 62.08 64.48 
5 54.2 46 46.9 63.9 62.08 64.4 
6 57.8 47 50.2 66.87 62.98 67.36 
7 57.8 48 55.2 70.87 63.87 70.91 
8 60.4 49 57.8 73.22 64.76 73.25 
9 65.4 50 59.8 75.13 65.63 75.31 

10 67.1 59 61.5 76.39 73.29 76.58 
11 69.4 59 58.1 73.19 73.29 74.19 
12 72.9 61 64.3 78.65 74.94 79.12 
13 63.6 59 58.1 73.39 73.29 73.61 
14 72.9 60 67.1 80.82 74.12 81.02 
15 77.2 62 71.2 84.23 75.75 84.41 
16 75.4 63 72.4 84.79 76.57 84.83 
17 79.8 63.5 73.6 85.84 76.97 86.03 
18 79.8 62.5 70.6 83.55 76.16 84.05 
19 81.2 66.5 74.8 86.93 79.38 87.12 
20 83.8 66 77.2 88.86 78.98 89.05 
21 90.6 71 83.8 93.34 92.92 93.57 
22 86.4 71.5 79.6 90.2 83.31 90.44 
23 89.9 72 83 92.83 83.69 93.05 
24 95.6 74 92 99.45 85.24 99.48 
25 96.3 73 89 97.36 84.47 97.57 

 
 
 
 

 
 
 
 
 
 
 
 
 



ISSN: 2411-5681                                                                                                   www.ijern.com 
 

108 
 

 
APPENDIX C. THE 25 SAMPLE EGGS AND RESEARCHER’S WORKING TABLE 
 

 

 

 
                                            


