
International Journal of Education and Research Vol. 6 No. 11 November 2018

115

Creating C# Programming Corpus using ANTLR4 for Non-Native English-Speaking Students

Satoshi Numata

Department of Digital Games, Osaka Electro-Communication University.
1130-70 Shijonawate Kiyotaki, Osaka, Japan.

E-mail: numata@osakac.ac.jp
Tel: +81-72-876-5103

ABSTRACT

In programming, naming classes, functions, and variables is important for making the code
readable and easy to maintain. As most of the programming languages are designed based on
English, non-native English-speaking programming learners have to learn English and the
programming language simultaneously, which can be a barrier to learners, especially in Asian
countries, to start programming because grammar and words in Asian languages are quite different.
Native English speakers can easily search, read, and learn from many sample codes published on
the Internet. I propose a system for automatically creating a corpus from a massive number of
sample codes found on the Internet using ANTLR4, which is a powerful parser generator using
grammar definitions. I expect such a corpus can help non-native English-speaking learners and
many professional developers .

Keywords: C#, Programming Education, English Learning, ANTLR4

ISSN: 2411-5681 www.ijern.com

116

1. Introduction

In programming, naming is an important process for creating readable and maintainable program

codes. In most cases, programming can be separated into designing algorithms and naming

variables and functions to implement the algorithms. Therefore, naming can consist of half the

programming process. Once we select a good name for a variable, we will be able to verify whether

the variable is updated appropriately for its role in the code.

According to Boswell and Foucher (2011), we can separate "surface-level improvements" into three

parts: selecting good names, writing good comments, and formatting codes neatly. Regarding good

comments, we sometimes can remove comments if variable and function names are more

descriptive. Where codes are often modified, comments can easily be left unchanged and it starts to

mislead the content of the code. Therefore, the naming process is the most important at the

"surface-level" if we put the code-formatting process together with algorithm design.

1.1. Programming Language and English

As mentioned above, descriptive names of variables and functions can help in the understanding of

code behavior. For example, if the statement in the code below can be read directly as an English

sentence, i.e., if the target string starts with "http://", it will start to download the page according to

the URL of the target string.

string targetString = "http://example.com/test.txt";
if (targetString.startsWith("http://")) {
 DownloadPage(targetString);
}

Because most popular programming languages were developed in the United States, most of the

grammatical features stand on English expressions, especially in the C-family of programming

languages such as C, C++, C#, and Java.

Therefore, knowledge of English is one of the key elements and required for better programming

understanding. This can be a barrier to non-native English-speaking programming learners. Native

English speakers can simply read sample codes and understand the basic ideas of the programming

International Journal of Education and Research Vol. 6 No. 11 November 2018

117

language. To learn English for daily life, we can find books, such as "Everyday English Words", that

explain basic words suitable for daily use. However, there are few learning materials for the English

used in programming languages. When we search source codes on the Internet, we can find that the

programming elements, such as classes, functions, and variables, are sometimes named using local

languages. However, this makes it difficult to understand the code structure because local languages

often have different grammatical structures for the programming statements. It is also sometimes

difficult to figure out whether a variable expresses one entity or several because some languages do

not differentiate singular and plural forms whereas most English words clearly differentiate them.

We can find services on the Internet that help us name programming entities using automatic

translation systems, and some students in my department are using such services. Because the class,

structure, function, and variable names are often very short (mostly two or three words), the name

of the source language does not provide enough information as context for translation in most cases,

so it is difficult to obtain the correct translated names. It is important to teach English together with

programming to enable students to write readable and understandable codes.

Thus, it is important to learn basic English words used in source codes as well as the programming

ideas simultaneously for non-native English speakers. This is why I suggest the importance of a

coding corpus for programming languages. I propose a system, for creating a corpus for C#

programming language using ANTLR4 (2012).

1.2. Parsing Source Codes using ANTLR4

ANTLR4 is a parser generator that takes LL(*) grammars and outputs source codes of a lexical

analyzer and parser. The ANTLR project also provides a collection of grammars of many popular

programming languages at the antlr/grammars-v4 on GitHub (2012), including C, C++, Java, C#,

Ruby, Python, and Swift. The coding corpus for many programming languages can be created using

those grammars with ANTLR4.

ISSN: 2411-5681 www.ijern.com

118

2. Grammars and Words of Programming Languages

We have to consider two limitations for choosing the target programming language of a corpus: the

simplicity of the grammar and the number of sample projects found on GitHub repositories. From

the grammatical viewpoint, some programming languages are not suitable for analyzing to create

coding corpora.

2.1. Grammatical Structure of C and C++

We first examine C and C++ languages. The C language has evolved by adding many features ad

hoc, and it is difficult to simply trace the structure of the code. According to Stroustrup (1994), C++

was designed to keep its compatibility with C; thus, C++ inherits the difficulty of C, and is also

difficult to trace the code structure. Figure 1 shows how the C++ code "void MyFunc() {}" is parsed

by the parser generated by ANTLR4 using the C++14 grammar. You can see the deeply nested

structure from the function definition node.

Figure 1: Example of C++ code analysis. Function definition node has deep descendant nodes.

noptrdeclarator

{

unqualifiedid

declspecifier

noptrdeclarator

parametersandqualifiers

typespecifier

void

functiondefinition

declarationseq <EOF>

simpletypespecifier (

trailingtypespecifier

parameterdeclarationclause)declaratorid

idexpression

compoundstatement

declaration

functionbodydeclspecifierseq

translationunit

declarator

MyTest

}

ptrdeclarator

International Journal of Education and Research Vol. 6 No. 11 November 2018

119

2.2. Grammatical Structure of C#

Regarding C#, it is possible to simply trace the structure of the code. Figure 2 shows an example

how the C# code "class Test { void MyTest() {} }" is parsed. You can see the method (function)

declaration node has shallow and simple descendant nodes, and it is very easy to extract the

function name from its structure. Hence, we can conclude that the newer C-family of languages

such as C# and Java, are better for creating a coding corpus.

Figure 2: Example of C# code analysis. Method declaration node has only descendant nodes of depth
of two before leaf keywords.

class_body

method_declaration

type_declaration

class_member_declarations

class

class_definition

namespace_member_declarations

method_body

}

)

compilation_unit

identifier

identifier

common_member_declaration

}

namespace_member_declaration

<EOF>

method_member_name

class_member_declaration

Test

MyTest

void

{

{

(

block

ISSN: 2411-5681 www.ijern.com

120

Many open source projects are using GitHub as a hub for publication and a source code

management system. GitHub enables us to search these projects by words, programming languages,

starred numbers, and update frequency. For example, we can search popular game-related projects

written in C# by specifying "game language:C# stars:>=1000" as a search word. There were 11

large game-related C# projects starred over 1000 times to examine the source codes that include a

total of 14,127 files and 2,165,577 lines of codes. I chose C# games because they are suitable for

beginning learners and I wanted to examine programming words in a specific area first.

2.3. Naming Analysis using ANTLR4

For C# grammar, ANTLR4 outputs a lexical analyzer, parser, and listener of the parser. The listener

is notified each time the parser finds a new element from a source code. Because of the

well-structured and clear grammar of C#, using directives, namespaces, classes, structures, fields

(variables), methods (functions), method arguments, local variables in methods can be found. When

the listener is notified of the appearance of those coding entities, that information is put on a stack.

When an identifier appears, that information will be popped out from the stack and combined with

the identifier. Such identifiers can now be logged as named-coding entities.

3. Corpus-Creating System

3.1. System Overview

The proposed system is composed of the three subsystems shown in Figure 3 for creating a coding

corpus. The listener of a parser outputs coding entities into an XML file. The XML file keeps the

code structure (File > Namespace > Class > Field, Method > Local Variable) because these entities

are output in order of the parsing precedence. Therefore, word information should be flattened

before the examination. The word-flattening subsystem is thus prepared for flattening the words

kept in the grammatical structure into a Comma-Separated Values (CSV) file. After the flattening

phase, the examination subsystem can load the flatten data and carry out statistical analysis.

International Journal of Education and Research Vol. 6 No. 11 November 2018

121

Figure 3: Overview of three subsystems of proposed system

For example, let us assume the following C# code:

using System.*;
public class PlayerAnimation {
 void StartWithDelay(float delay) {
 int startCount = 0;
 bool hasFinished = false;
 ...
 }
}

This code is lexically analyzed and parsed using the listener. The listener finds coding entities and

outputs them as an XML file as follows (a "compilation_unit" node corresponds to a source code

file):

<compilation_unit>
 <using target="System.*" />
 <class name="PlayerAnimation">
 <method-decl name="StartWithDelay">
 <arg name="delay" type="float" />
 <block>
 <local-var name="startCount" type="int" />
 <local-var name="hasFinished" type="bool" />
 ...
 </class>
</compilation_unit>

ISSN: 2411-5681 www.ijern.com

122

The word data are flattened as follows (leading numbers and colons indicate the line numbers):

1: class,PlayerAnimation,[File]sample/PlayerAnimation.cs
2: method,StartWithDelay,[Class]PlayerAnimation,[File]sample/

 PlayerAnimation.cs
3: local-var,startCount,type=int,[Block],[Method]StartWithDelay,

 [Class]PlayerAnimation,[File]sample/PlayerAnimation.cs
4: local-var,hasFinished,type=bool,[Block],[Method]RunActivity,

 [Class]PlayerAnimation,[File]sample/PlayerAnimation.cs
...

The first element in each line is an entity-type specifier, and the second element is the name. If the

entity is a class field or local variable of a method, the third element is the type information such as

'int', 'float', and 'string'. All ancestor entities are listed afterward for making it possible to trace the

origins of the named entities.

3.2. Normalization of Underscore and Capitalization Style

Though there is little difference between how the entity names are selected in most cases, the

coding conventions differ in each project. The difference mostly appears on the variable or function

names, and some include underscores and have capitalization. For instance, an integer value that

indicates effect type can be expressed as a variable with the name "effectType", "effect_type", or

"EffectType." The name can be "m_effectType" in some cases for clearly declaring that is a field

member of a class. Therefore, normalization should be carried out for each extracted word. I present

an algorithm for normalizing a name (Algorithm 1).

Algorithm 1: Normalization of name with underscore and capitalization style

R ← ∅; p ← name.len - 1
while p ≥ 0 do
 c ← name(p)
 p ← p - 1
 while c = '_' ∧ p ≥ 0 do
 c ← name(p)
 p ← p - 1
 end while
 if p < 0 then R ← R ∪ { lower(c) }; exit
 s ← c
 while p ≥ 0 do

International Journal of Education and Research Vol. 6 No. 11 November 2018

123

 d ← name(p)
 p ← p - 1
 if c.type = d.type then
 s ← d + s
 else
 case c.type of
 Lower:
 case d.type of
 Upper: R ← R ∪ { lower(d + s) }; s ← ∅; exit
 Otherwise: R ← R ∪ { lower(s) }; s ← ∅; exit
 end case
 Upper: R ← R ∪ { lower(s) } ; p ← p + 1; s ← ∅; exit
 Number: p ← p + 1; s ← ∅; exit
 Otherwise: R ← R ∪ { lower(s) }; s ← ∅; exit
 end case
 end if
 end while
 if s.len > 0 then
 R ← R ∪ { lower(s) }
 end if
end while

In this algorithm description, R indicates the normalized set that holds every component separated

by underscores or capitalizations, and name is a string that contains the entity name. It scans the

name from the end to the beginning, so that a name, such as "OpenGLManager", can be correctly

separated into "open", "gl", and "manager." If we scan this from the beginning, capital characters in

the middle will be connected and "glm" will be extracted. Few programmers might name the same

manager as "OpenGLmanager", from which "lmanager" will be extracted with the proposed

algorithm, but this should be rare, so I assumed that it can be ignored in statistical analysis.

Numbers and underscores in the name are removed with this algorithm.

3.3. System Implementation

I implemented the proposed system as the application shown in Figure 4. This application is

implemented using Java. By checking the types of coding entities, it can search or rank words used

in actual projects in GitHub.

ISSN: 2411-5681 www.ijern.com

124

Figure 4: Experimental implementation of system. Ranking of last word used in class and

structured names are listed as tree.

As described in Section 2.2, it loads the word data that were statistically analyzed from 14,127 files

and 2,165,577 lines of codes over 11 repositories of game-related projects written in C#. It loads

336,799 names of coding entities. Table 1 shows the number of each coding entity.

Table 1: Number of extracted names for coding entities

Class Structure Interface Enums Enum-Member Method Field Local

Variable

Constant

18,800 1,220 1,257 1,750 13,553 96,682 50,280 99,495 6,884

For example, the ranking of the last words used in class and structure names is (number in

parentheses shows how many times the word appears in source codes) 1-Node (936), 2-Info (805),

International Journal of Education and Research Vol. 6 No. 11 November 2018

125

3-Model (249), 4-Base (246), 5-Task (244), 6-Test (222), 7-Serializer (219), 8-Entity (216),

9-Attribute (215), and 10-Data (213). The ranking of the first words used in methods is 1-get (8343),

2-on (3670), 3-create (2972), 4-update (2868), 5-set (2761), 6-load (2170), 7-equals (1771), 8-to

(1726), 9-test (1709), and10-add (1641).

Some words listed above indicate the feature of the programming language I examined, such as

"Serializer", "on", "equals", and "to". Both rankings have the word "test" because the Test-Driven

Development has been more widely used recently.

4. Conclusion

I proposed a system for creating a coding corpus for C# programming language using parsers

generated from ANTLR4. I expect such a corpus can help non-native English speakers learn English

effectively for understanding programming styles during their lessons.

I examined game-related projects in a specific area written in C# for this study. I will continue to

work with other project categories other than games and other languages to investigate the tendency

of such categories and programming languages.

ISSN: 2411-5681 www.ijern.com

126

References

Boswell, D., & Foucher, T. (2011). The Art of Readable Code: Simple and Practical Techniques for

Writing Better Code. O'Reilly Media, USA.

ANTLR4 (2012). Retrieved from http://www.antlr.org

antlr/grammars-v4 on GitHub (2012). Retrieved from https://github.com/antlr/grammars-v4

Stroustrup, B. (1994). The Design and Evolution of C++. Addison-Wesley Professional, USA.

